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A linear stability analysis of laterally confined swirling flow is given, of the type 
described by Long’s equation in the inviscid limit or by the von Kdrmdn similarity 
equations in the absence of lateral confinement. The flow of interest involves identical 
counterflowing fluid streams injected with equal velocity W, through opposing porous 
disks, rotating with angular velocities SZ and 552, respectively, about a common 
normal axis. By means of mass transfer experiments on an aqueous system of this type 
we have detected an apparent hydrodynamic instability having the appearance of an 
inviscid supercritical bifurcation at a certain (521 > 0. As an attempt to elucidate this 
phenomenon, linear stability analyses are performed on several idealized flows, by 
means of a numerical Galerkin technique. An analysis of high-Reynolds-number 
similarity flow predicts oscillatory instability for all non-zero Q. The spatial structure 
of the most unstable modes suggests that finite container geometry, as represented by 
the confining cylindrical sidewalls, may have a strong influence on flow stability. This 
is borne out by an inviscid stability analysis of a confined flow described by Long’s 
equation. This analysis suggests a novel bifurcation of the inviscid variety, which serves 
qualitatively to explain the results of our mass transfer experiments. 

1. Introduction 
The present work stems in part from the design of a laboratory device capable of 

generating a uniformly accessible surface for convective heat or mass transport 
between fluid streams. In previous works on the subject (Goddard, Melville & Zhang 
1987; Zhang & Goddard 1989) it has been shown, by yet another variant of the 
Karman similarity equation, that the requisite flow field can in principle be realized by 
means of counterflowing rotating fluid streams, such as might be created by uniform 
injection through porous rotating disks. A similar flow configuration has also been the 
subject of recent theoretical and experimental investigations of the effects of swirl on 
gaseous flames (Kim, Libby & Williams 1992). 

For the purposes of the present discussion and for later reference, we recall that for 
steady similarity flows of the von Karman type, the surface-normal velocity depends 
spatially only on surface-normal distance z with, say, u, = W(z). Hence, the mass (or 
heat) transfer coefficient at a planar stagnation surface z = 0 between counterflowing 
rotating streams is given asymptotically for large PCclet numbers by the non- 
dimensional surface-normal velocity gradient W’(0) as (Zhang & Goddard 1989) 

where Nu and Pe denote the appropriate Nusselt and Piclet numbers and the primes 
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denotes derivatives with respect to z. In general, W'(0) depends parametrically on the 
property ratios of the fluid streams, and on a characteristic Reynolds number Re and 
rotation parameter or inverse Rossby number Ro : 

where Q, d and W, are disk rotation speed, disk separation and characteristic injection 
velocity, respectively. At large Re, the flow assumes an inviscid character, and W'(0) 
becomes independent of Re. 

A calculation of W(0) is given by Zhang & Goddard (1989) for property ratios 
characteristic of water and kerosene. As discussed in that work, the (Boussinesq) form 
(1) is valid only in the injection-dominated regime K < x. At K = x, where W'(0) = 0, 
it must be replaced by the (Levcque) form 

Re = W,d/v and K = a d /  W, = Ro-', (2) 

I Nu = 4 [ - W " ( O ) ]  Pef, 
r(J) (3) 

which is characteristic of solid-fluid interfaces. The latter form reflects the fact that at 
the critical Rossby number Ro = x-l one attains a hydrodynamically 'frozen' 
fluid-fluid interface where surface stretching is annulled by the effects of rotation. At 
this point, viscous layers of characteristic thickness O(Re-f) replace O(Re-4) layers, and 
one enters the rotation-dominated regime K > K of inviscid cellular structures separated 
by multiple viscous interlayers (Zhang & Goddard 1989). 

As is evident from the above discussion, rotation provides an additional degree of 
parametric freedom over and above simple stagnation flow, which may confer special 
advantages for the study of mass and heat transfer. Among these is the possibility of 
achieving a hydrodynamically frozen interface for processes such as the gas-phase 
deposition of fragile solid films onto smooth liquid substrates. The above con- 
siderations serve as a primary motivation for the present work, which is aimed at 
elucidating theoretically an apparent hydrodynamic instability revealed by the mass 
transfer experiments to be discussed below. 

Hydrodynamic instability in this particular flow should come as no surprise, given 
the non-uniqueness of rotating-disk flows (Parter & Rajagopal 1984; Zandbergen & 
Dijkstra 1987; Goddard et al. 1987; Goldshtik & Javorsky 1989; Zhang & Goddard 
1989) and the well-known instabilities of Ekman-von Karman boundary layers 
(Greenspan 1968). Indeed, the stability of flow near rotating disks has been the subject 
of numerous theoretical investigations over the years, beginning with the works of 
Stuart and coworkers (Gregory, Stuart & Walker 1955) and including recent works by 
Szeri, Giron & Schneider (1983), Bodonyi & Ng (1983), Malik (1986) and Faller (1991), 
to name but a few. These studies, most of which rely on the type of local stability 
analysis pioneered by Gregory et al. (1959, confirm the magnitudes of critical 
Reynolds numbers observed in various experiments. However, in the rotating disk flow 
of interest here, one can anticipate major differences, in that strong injection of fluid 
at the bounding disks will blow all viscous layers off the disks and onto a weak Prandtl 
layer at the central stagnation surface (Zhang & Goddard 1989). To terms of lowest 
order in Re, one would expect this layer to have a negligible effect on the globally 
inviscid base flow and its stability. 

As background for the subsequent theoretical stability analysis, 52 describes our 
mass transfer experiments on counterflowing aqueous streams. As will be seen, the 
experimental data are consistent with the inviscid limit of (1) for K below a certain 
value, approximately 2.1, which, at first, we thought might represent a supercritical 
'pitchfork ' bifurcation. However, a subsequent linear stability analysis, presented here 
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in $4.1, indicates that the inviscid similarity flow is inviscidly unstable for all K > 0. 
Moreover, we shall show that the addition of weak viscous effects do not serve to 
explain the observed stability of the flow for K < 2.0. Although not in accord with 
experiment, this stability analysis of similarity flows provides an essential clue to the 
effects of finite container geometry, as represented by cylindrical sidewalls, on the 
stability of the base flow. 

In $3, we make use of Long’s equation (Fraenkel 1953; Batchelor 1967; Yih 1980) 
to compute the inviscid base flow, and in $4.2 we carry out an analysis of the linear 
stability of that flow to general three-dimensional disturbances, which suggests an 
uncommon type of bifurcation at K = 0. 

2. Mass-transfer experiments 
We describe here the experimental apparatus and the electrochemical technique 

employed to study mass transfer between counterflowing aqueous streams, and we 
present the results of our mass transfer experiments. Those interested mainly in the 
subsequent stability analysis may proceed directly to $4. 

2 .  I .  Experimental apparatus 
The apparatus is shown schematically in the definition sketch of figure 1. It consists of 
two rotatable plenum chambers covered by 8.8 cm diameter porous disks (D). The gap 
between the disks is fixed at d = 2 cm. Fluid is supplied by separate centrifugal pumps 
(P) to the chambers through hollow concentric shafts, each supported on duplex 
bearings and is driven at constant rotational speed by belt and pulley connected to an 
electronic tachometer, with provision for corotation or counter-rotation of the disks. 
The opposing fluid streams, injected through the porous disks with presumably 
uniform velocity, impinge at the fluid-fluid interface (I) positioned at the aperture of 
a splitter plate (S). The latter is situated at the midplane of the gap. Since the injectional 
Reynolds number Re is of the order of lo3, the boundary layers on the splitter plate 
are assumed to have negligible influence on the flow over the aperture, at least for the 
base flow. 

The flow cell is vibrationally isolated from pumps and motors by flexible rubberized 
tubing and drive belts. The circulation system for each cell consists of the centrifugal 
pump (P), a valve, air coolers (C), rotameters (F) and flexible tubing. Injection 
velocities, controlled by the valves, are monitored by rotameters (F). Flow rates of a 
few hundred cm3/s and, hence, linear velocities of several tens of cm/s can be achieved 
in this set-up, corresponding to injectional Reynolds numbers of several thousand. 
Virtually arbitrary Rossby numbers Ro can be obtained by adjusting the rotational 
speeds. The fluid is maintained at constant temperature by the air coolers (C). The 
porous plates were made from 100 pm rigid stainless-steel screen, spot-welded onto 
stainless retainer plates. 

In order to measure mass transfer between the counterflowing streams, an 
electrochemical technique was employed. Two sections of nickel pipes (E) serve as 
counter electrodes for electrochemical injection and removal of the electroactive 
species, which is thereby transferred steadily between upper and lower compartments 
under a steady applied voltage, controlled by a potentiostat. The resulting 
electrochemical current is measured by means of a digital multimeter, which by the 
Faraday equivalence gives the mass flux. 
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FIGURE 1. Schematic of flow facility (not to scale) : C, air coolers; D, porous metal disks; E, nickel- 
tube electrodes; F, flow (rota) meters; G, glass wall; I, liquid-liquid interface; M, variable-speed DC 
motors, with digital tachometers; P, centrifugal pumps; R, rotating seals; S, splitter plate. 

2.2. Experimental procedures 
The well-known potassium ferricyanide/ferrocyanide (in aqueous KOH) redox 
reactions (Gordon, Newman & Tobias 1966) was employed as the electrochemical 
system : 

cathode : Fe(CN)i3 + e- + Fe(CN)i4, 

anode : Fe(CN)i4 +. Fe(CN)i3 + e-. 

The ferricyanide concentrations in small samples withdrawn periodically from the 
upper and lower compartments were monitored by means of a UV-visible 
spectrophotometer in the wavelength range 340480 nm. Ferrocyanide ion has no 
absorbance peaks, while ferricyanide absorbs strongly around h = 424 nm. Tem- 
perature had to be carefully controlled during spectrophotometric measurements, since 
the optical absorbance is affected by temperature. The details of the measurements are 
described by Wu (1991). 

Experiments were carried out in solutions with molar concentrations 

c,,, = 5.9 x 10-4~,  cFerro = 5 x 10-3~,  cFerr, = 4.85 x 10-3~ .  

The density, viscosity and diffusion coefficients at different temperature were calculated 
by an empirical formula given by Gordon et al. (1966). In order to assure that 
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FIGURE 2. Experimentally determined interfacial mass transfer, for corotational flows at different 
Reynolds number. Solid line is theory for K < K. 

potassium ferrocyanide/ferricyanide is the only redox reaction occurring at the counter 
electrodes, so that electrochemical current reflects the actual mass transfer rate 
(without e.g. electrolysis of water), the DC voltage level was maintained below 0.6 V. 
To achieve accurately detectable concentration differences AC of ferricyanide ion, at 
these voltage levels and with the relatively high mass transfer coefficients in this system, 
it was necessary to restrict the mass transfer area. This was achieved by installation of 
a splitter plate with a small, 2 cm diameter, central aperture. 

Measurements of concentrations and electrochemical currents were taken at different 
voltage levels. The slope of the remaining linear plot of AC versus I, at various 
Reynolds and Rossby numbers yields the mass transfer coefficient. In order to 
investigate the hydrodynamic limitations on the operation of the flow cell, a rather 
large region of R ~ - K  parameter space was investigated. The Nusselt and Pkclet 
numbers are of the order of lo3 and los, respectively. Hence, the magnitudes of Nu/Pei 
are of order unity. 

2.3. Results and discussion 
Experiments were conducted with corotating disks at equal rotational speeds, and at 
four different injectional Reynolds number : 1360, 18 14,2267 and 2946. Various values 
of K were achieved by increasing the rotational speed from rest. The values of K were 
chosen to lie below n, so that the flow was always in the injection-dominated regime 
for similarity flows (Goddard et al. 1987). The experiments were repeated with counter- 
rotating disks, at equal speeds for Reynolds number 2267 and the same values of K as 
before. 

The results of the experiments are presented in figure 2 as plots of the experimentally 
derived values of Nu/Pef versus theoretical values, given below in equation (39) for the 
simplest inviscid similarity flow. 

From figure 3 it is seen that the mass transfer for counter-rotating flow is almost the 
6 FLY 251 
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FIGURE 3. Experimentally determined interfacial mass transfer, for counter-rotational flows at 
injectional Reynolds number Re = 2267. Solid line is theory for K c n. 
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FIGURE 4. ‘Supercritical’ [(Nu/Pe;),-  Nu/Pet]* as a function of inverse Rossby number at various 
Reynolds numbers. 

same as that for corotating flow. The experimentally observed mass transfer is, 
therefore, in good agreement with theoretical predictions below certain values of K ,  

whereas an abrupt increase in mass transfer occurs above an ostensible critical value 
of K which appears to lie in the range 2.01-2.09. Since such behaviour might reflect a 
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Re Kc a (SD) b (SD) 
1360 2.09 2.1 7 (0.28) -4.54 (0.65) 
1814 2.08 2.24 (0.13) -4.66 (0.31) 
2267 2.04 1.82 (0.06) - 3.73 (0.13) 
2946 2.0 1 1.8 (0.12) - 3.63 (0.28) 

TABLE 1 .  Summary of parameter deduced from (5) from mass transfer data at various Reynolds 
numbers 

subcritical bifurcation with hysteresis, all the experiments were repeated, for both 
counter-rotating and corotating disks and for the same values of Reynolds number and 
K ,  by decreasing the rotational speed from an initial high level. No hysteresis was 
observed within the scatter of our experimental data. 

Since the branching of the curve at K x 2.0 appears similar to what one might expect 
from a supercritical bifurcation of the underlying convective flow, we were led to 
attempt a qualitative application of the Landau idea (Drazin & Reid 1989), according 
to which a disturbance amplitude A, in a steady bifurcated state is given by 

A , C C ( K - K J +  as K J K , .  (4) 

Thus, above K x 2.0 we attempt to correlate our data in the form: 

in which the left-hand side is taken to represent the disturbance amplitude A,. 
Figure 4 shows the resulting plot of [ ( N ~ / P e k ) , - N u / P e i ] ~  versus K at various 

Reynolds numbers, which is indeed roughly linear. The intercept on the K-axis gives the 
apparent critical values K,, listed in table 1, along with the standard deviations (SD) of 
a and b. While it is highly tempting to interpret the above results as an inviscid 
bifurcation from an inviscid base state at a definite K, > 0, the following stability 
analysis indicates otherwise. 

3. Inviscid theory for the base flow 
To account eventually for the effects of a finite container, the idealization shown in 

figure 5 is adopted as the flow geometry. There, two ring sinks, situated at the edge of 
porous rotating disks, remove fluid injected uniformly through the disks. The Euler 
and continuity equations governing the assumed steady axisymmetric base flows are 

- DU V 2  

DV UV - 
D t  r 0, (7) 

D W  a P 
Dt az p 

1 arU a W  
r ar az 

-- - --(-), 
+- = 0, -- (9) 
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where 

I 
FIGURE 5. Idealized sketch of flow geometry. 
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= u-+ w-, D 

Dt ar az 
- 

with vertical boundary conditions, and at the disks 

V = Q * r ,  $ = T + W , r 2  at z = k + d  for r <  R, (1 1) 

where 51+ = 51- = 51 for corotation and 51+ = -51- = 51 for counter-rotation, and $ is 
the Stokes stream function defined by 

To represent the solid sidewalls, we further take 

$ = O  at r = R .  (13) 

In the standard way (Fraenkel 1953; Batchelor 1967; Yih 1980), (6H9) are then 
reduced to Long’s equation : 

where h($) is usually determined from some ‘upstream’ flow condition, as 

where X($) is total head: 
h($) = dW$)/d$9 

From the boundary conditions (1 1) it then follows that 

S($) = (4Q2/W,2)V. 
By introducing non-dimensional variables 



Influence of swirl and conjnement on counter-owing streams 157 

then dropping primes, we obtain from (14x1 7) the following non-dimensional 
equation 

4~~ A($) 
$+7$=- a a' ' 

where a is the (inverse) aspect ratio. 
We note that (19) and (11) imply that 

(19) 

In general the left-hand side of this equation may be an arbitrarily complicated 
function of r such that r and, hence, h(+) are nonlinear functions of $. However, in 
at least two limiting cases of the present problem r($) becomes independent of $, 
implying a constant value of h. 

In the first case, a + a0 with a uniform flow Wo and constant swirl G? at infinity, r($) 
may be set equal to zero and h($) takes on one of the constant values f 2 ~ ' .  Even 
relatively simple flows of this type exhibit very complex behaviour and have been 
widely investigated for a variety of situations (Greenspan 1968; Yih 1980). 

The second case, a+O, corresponds to infinite rotating disks where the flow is 
governed by the Karmdn similarity form of the Euler equations, whose solutions, 
presented by Goddard et al. (1987), are cited below in $4. We obtain from these 
solutions a constant value of h independent of $: 

K 2  COS K h=f-----. 
sinZ :K 

In general, for finite disks with finite spacing, there is no known simple expression 
for h($). In what follows, we merely assume that h is independent of $, which results 
in the standard linear form of Long's equation: 

where q is a constant independent of $. For similarity flows a = 0 and (21) corresponds 
to 

(23) 
COS K 

4 0  = k m -  

The general solution to (22) can be written down immediately as (Fraenkel 1953; Yih 
1980) 

+ C, sin y,(z - i)] J,(h, r) + (Sr2 + T) (cos 2 ~ 2  + B sin ~ K Z ) ,  (24) 
where A,  are roots of the Bessel function &I), yn = ( 4 ~ ~ - h i a ~ ) f  and M, A,, C,, S, 
T, B are constants to be determined from the appropriate boundary conditions. We 
note the alternative representation for $ : 

+ C, sin T,(Z - a)] J1 + (Sr' + T) (cos ~ K Z  + B sin 2KZ), (25) 
(v:) 
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where 7, are certain roots of trigonometric functions, v,  = (4~~-7 :a~) f  and the 
constants M ,  A,, C,, S, T, B are generally distinct from those in (24). The 
representation (24) involves radial eigenmodes whereas the second, (25), involves 
vertical modes. We choose the representation (24) for our subsequent analysis, since it 
approaches in an obvious manner the similarity solution in the limit a + 0. 

For flow between finite disks with finite spacing, the expression for h($) given by 
(15H16) reduces at z = & a  to, 

Since the radial pressure gradient is generally not constant, this implies that, if h is to 
be constant, we must relax the condition of no slip U = 0 at the disks, which in any 
event arises somewhat fortuitously in the inviscid limit for the above similarity flow. 
However, as will be seen from the numerical computations below, the no-slip condition 
still holds approximately over much of the central portion of the porous disks, 
breaking down only in the sink-dominated regions near their edges. While this appears 
to have negligible consequences for the inviscid limit of interest here, it does suggest 
that any attempt to account for higher-order viscous effects would require strong 
boundary layers on the disks near their periphery. 

For the inviscid limit of interest, we adopt the boundary conditions 

$ = 0 at r = 0 for JzJ < t,  (27) 

$ = 0  at z = O  for O < r < l .  (28) 

$=Tar2  at z = k ;  for O < r <  1. (29) 
Then (29) and (28) yield 

The base-flow velocity components are given then by 

V = -  Z A,[cos y,(z-f) + C, sin y,(z-t)] A(h, 

The constant q remains to be specified and, as we noted earlier, we have no a priori 
value for it except in the limiting cases a = 0 and a + 00. In what follows, we treat q 
as a free parameter and examine the influence on the base flow and its stability. In 
particular, we will choose the limiting value of qo for similarity flow as a reference point 
and examine the sensitivity of the results to variations about qo. We now present our 
computations of the base flow and the mass transfer coefficients and compare them 
with the limiting case of similarity flow a --f 0. 
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FIGURE 6.  Streamlines in meridional plane for various values of d / R .  Solid lines 
represents the similarity solution. 

In figure 6 we present streamlines for different a values. As the aspect ratio a-' 
becomes large, the stream surfaces obtained from Long's equation obviously approach 
the similarity form. We find that with increasing K the flow is swept radially outwards 
much faster and departures from similarity are stronger. We also note that for K small, 
the streamlines are almost unaffected by q, whereas at higher values of K the effects are 
much more pronounced. 

The expression for the local interfacial mass transfer coefficient in the injection- 
dominated region is given asymptotically for large Pe by the non-dimensional form 

Nu(r) = cl(r) Pet, 
where cl(r) is given by 

(Acrivos & Goddard 1966) with 

= -(d$-/d z),-o = rU(r, Z)Ic-o, (38) 
where U is given by (33). In the limit a -+ 0, we have @ = t[r2 W(z)] and, for the inviscid 
flow at hand, this gives the similarity form 

which follows from (57)-(60). In figure 7, we show the effect of variation in values of 
a on the ratio of mass transfer coefficients Nu(r)/Nu, computed from (35). As indicated 
in this figure, the mass transfer remains practically uniform in the central region of the 
midplane, over which our experimental transfer coefficients were actually measured. It 
is also observed that mass transfer is very weakly affected by changes in the values of 
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FIGURE 7. Nu(r)/Nu, as a function of r / d  for various a. 

q (a 50 % change in q changing the coefficient by only about 5 X) and the latter change 
is nearly uniform over the central region. We now examine the linear stability of the 
above base flow. 

4. Linear stability analysis 
First we derive the equations governing three-dimensional perturbations, specify the 

associated boundary conditions and then describe the method of solution to obtain 
growth rates. Next, we consider the similarity limit a + 0 and, finally, we discuss linear 
stability for a > 0. 

We recall that, in terms of cylindrical coordinates ( r ,  0, z )  and the corresponding 
perturbation velocity components (u, u, w) natural to our geometry, a general three- 
dimensional perturbation 

$(r, e ,z ,  o = M ,  8, Z, o, ~ ( r ,  e, Z, t ) ,  w(r, e, z ,  O,  p(r ,  o,z,  01 (40) 
on an axisymmetric steady base flow [U(r, z), V(r, z ) ,  W(r, z) ,  P(r,  z)] satisfies the 
linearized non-dimensional equations, 
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where 
D a a v a  a _ -  - -+u-+--+ w- 
Dt at ar r ae a Z '  

(45) 

and where in addition to the variables (18) the non-dimensional time 

t' = Wot/d (46) 
is implied. Although we shall mainly focus on the limit Re+ 00, we retain terms in 
Re-', in order to analyse weak viscous effects in the case of similarity flows. 

Assuming that the perturbation $(r, 8, z, t )  is regular at r = 0, we adopt a normal- 
mode representation 

(47) 
where n = 0, 1,2, . . ., is the azimuthal wavenumber and Q the complex growth rate. This 
results in an eigenvalue problem for &r, z) = &(r, z) over the (r, z)-domain, with 
eigenvalues a(n, K, a, Re). 

We treat the above problem numerically, by means of a Galerkin method (Fletcher 
1984), with basis functions of the separable form R,(r) Zm(z) and subsequent 
representations for 4 of the form 

$(r, e, z, t )  = &r, z )  ein@+ul, 

where A and m are chosen from appropriate discrete or continuous sets. By means of 
(48), it is possible to represent various types of boundary conditions appropriate to the 
problem at hand, about which a few words are in order. 

In the case of finite Re to be discussed below, we impose no-slip conditions in 
tangential components of velocity at the bounding surface r = 1, z = +t .  However, in 
the inviscid limit such no-slip conditions are relaxed, except that the azimuthal 
perturbation 0 is still assumed to vanish at z = +a, in order to satisfy conservation of 
angular momentum of injected fluid. 

On the other hand, all boundary-normal velocity perturbations are assumed always 
to vanish at r = 1, z = ++. For the latter boundaries, we note that the vanishing of 
normal velocity perturbations can be thought of as the limit, for K+O, of a more 
generally correct boundary condition connecting w and p : 

w = +K(p-p,) at z = +t, (49) 
where K is a hydraulic conductivity of the porous boundary A and po is a 'supply 
pressure ', which must be given by 

in order to maintain the overall volumetric injection of the base flow.? 
Before carrying out the above expansions, it is convenient to eliminate the pressure, 

by cross-differentiation of the perturbation equations (42)-(44), and the vertical 
perturbation w, by means of the continuity equation (41). This reduces the problem to 
one of determining [u, u] .  

For the vertical direction we then choose 

1 
d2 Z,(z) = - {[( - 1)" - 13 cos M KZ + [( - 1)" + 11 sin mxz} 

t This more general boundary condition was suggested by an enlightening discussion with our 
colleague, Professor Paul Libby. 
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for m = 1,2, ..., based on the fact that the inviscid base state itself is trigonometric. 
The trial functions Z,(z) vanish at the plates and form a complete orthonormal set on 
(-a,+). The choice of R,(r) is governed by the lateral boundary conditions and will be 
made explicit below. 

In the usual manner, the representation (48) is substituted into the equations and the 
residuals are required to be orthogonal to the chosen trial function, thus generating the 
linear system of equations for the expansion coefficients : 

Here 1 and M are complex non-Hermitian square matrices, whose order will 
ultimately be determined here by the number of (discrete) modes chosen in (48), and 
4 = [&A, ,] is the unknown coefficient vector. The resulting eigenvalue problem 

det(1 -uM) = 0 (53) 
is solved to obtain u as a function of the various parameters. The number of expansion 
modes in m and h are varied in solving the eigenvalue problem until a convergence was 
achieved in the largest growth rate. We find that a modest number of modes, of the 
order of ten each in m and A, gave convergence to at least three decimal places in the 
u values. We discuss next the stability of flow between infinite disks. 

4.1. Large- Re similarity flows (a = 0) 
For a = 0 the base flow is described by the well-known Karman-Bodewadt-Batchelor 
reduction of the Navier-Stokes equations (Zhang & Goddard 1989) which is 

(54) 
equivalent to 

Re-’ g”’ + 2 Re (g) g” - (8‘)’ - C = 0, 
where ( )’ = d()/dz and the cylindrical polar components of fluid velocity and the 
radial pressure gradient are given in terms of the complex dependent variable g(z) as 

( 5 5 )  
follows : 

l# = uM#. (52) 

F+iG = g‘(z), H = -2Re(g) 

and 

where [u, v, wl = [rF(z), rG(z), W z ) l .  (57) 

F = O ,  G = ( T ) K ,  H = f l  at z = T i  (58) 

The boundary conditions at the porous plates are 

with the signs for G being given in parentheses for the case of counter-rotating disks. 
For large Reynolds number, in the injection-dominated region K < x ,  the solution to 

the above equation can be expressed as 

F,(z) + F,(z)/Re + . . . 
G,(z)+G,(z) /Re+ ... 
H,(z)  + H,(z)/Re + . . . 

(59) 

The inviscid solution, which satisfies the no-slip boundary conditions at the porous 
disks, is given by 

H, = 
sgn (z)  [cos’ K(Z - sgn (z))  - cos2 ($41, cOs2 ( i K )  - 1 

1 dH, F - 
O -  2 d z ‘  
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The viscous corrections [F, ,  GI, H,], given by Zhang & Goddard (1989) and amended 
here, are recorded in the Appendix. 

The radial dependence of the base state suggests that general three-dimensional 
perturbations can be expressed as 

which is reminiscent of the planar case discussed by Brattkus & Davis (1990). Also, the 
neutral case (T = 0 corresponds to the 'spatial instability' of boundary layer flows 
discussed by Chen & Libby (1968). However, in general A may be complex. Equation 
(63) corresponds of course to 

in (48), which formally represents a decomposition in terms of the Mellin transform 
(ErdClyi 1954) as opposed to the standard Fourier transform. 

R,(r) = rJ\ (64) 

Writing 

one sees that 
1 = Re@), /3 = Im(A) 

fleeins = 1 i(nO+plogr) r e  7 

whose phase represents the logarithmic spiral-form disturbance assumed in the local 
normal-mode analysis of Gregory et al. (1955). It arises quite naturally from the 
present treatment, which not only lends support to their representation but also 
provides a novel exact decomposition of general disturbances into spiral-form (Mellin) 
as opposed to plane-form (Fourier) modes. However, contrary to the analysis of 
Gregory et al. (1955), the former are generally not 'normal' modes, i.e. not uncoupled, 
as we next establish. While the spiral-form decomposition (66) has limited utility in the 
present problem it may prove useful for related stability analyses. 

Assuming complete regularity of the modal amplitudes Ir\l at r = 0, we take 1 to be 
integral in (65) with 1 = 1,2, ..., writing 

(67) 
Then, upon substituting this form of perturbation together with the base flow 
(55)-(56), into (41)-(44), we obtain the following eigenvalue problem in z, described by 
an infinite set of coupled ordinary differential equations : 

(68) 

iA(4 = i,<z.P) = [UlY VlY W,YP,l. 

( A  + 1) u, + inu, + dw,-,/dz = 0, 
u,[incr+ ( A  + 1) inF- Gn' - 2(A + 1) 9 -v,[(A + 1) (T + ( A  + 1)' F+ inG(A - 3)] 

du, dv 
dz dz 

+ inH--(A + 1) H A +  w, [inF'-(A + 1) G'] - Re-' 

+ Re-' ul+'[(A + 1 )  [ (A  + 2)' -(n' + l)] - 2n2] 

+ Re-' u,+,[2in(A + 1) - in[@ + 2)2 - (n' + l)]] = 0, 

dw d'w 
dz dz' Re 

aw,+[(A - 1) F+ inG + H ' ]  w, + H A -  Re-'(>+ w,+' 

au,-,+[(A+ l)F+inG]u,~,-2Gv,~,+H- du1-2 
dz dz 

d'u,-, [ dz' 
+ w,-' F'- Re-' -- [A' - (n' + l)] u, + 2inu,+, 

for 1 = 1,2,3, . . ., with eigenvalues v = a(n, 1, p, K ,  Re). Here, n, 1, /3 relate to the 
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FIGURE 8. Growth rate and frequency us. I for various values azimuthal wavenumbers n, at 
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perturbation waveform while K and Re characterize the base flow. The real part of CT 

represents the growth rate of the disturbance and the imaginary part its oscillation 
frequency. In line with the representation (48), we take 

for 1, m = 1,2,3, . , . , where the Zm(z)  are given by (5 1). Thus the eigenvalue calculation 
(52) is tantamount here to a Fourier-trigonometric analysis of (69H70). 

Using the solution method described earlier, we first examine the eigenvalues CT as 
functions of various parameters of interest for the inviscid base flow. Subsequently, we 
analyse the stability of a weakly viscous base state against viscous perturbations, by 
including the weakly viscous corrections indicated in (59) and retaining the term in 
Re-' in (41)-(44). 

4.1.1. Results and discussion 
For a range of parameters ( K ,  Re) the maximum growth rate and the corresponding 

frequency as a function of n and I are computed. It is observed that axisymmetric 
disturbances (n = 0) are always stable, i.e. Re (g) < 0, for all values of K .  We note that 
Brady & Durlofsky (1987) have also predicted stability of similarity solutions against 
axisymmetric disturbances in the case of finite disks without injection. The computed 
growth rate and frequency for non-axisymmetric perturbations are shown in figure 8 
as a function of 1 and n for K = 1.0 and = 0.4. The growth rate is zero at K = 0 but 
is always positive for K > 0, which is of course at odds with the ostensible critical values 
of about 2.1 observed in our experiments. 

From figure 9, we see that weak viscous effects in the base flow and the perturbations 

[u,,vtl = [ ~ ~ , m , u ~ , m l Z r n ( ~ )  (71) 
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3.1 

FIGURE 1 1  (a). For caption see facing page. 

. 

reduce the growth rate but do not eliminate the instability, as the non-dimensional 
growth rates are still orders of magnitude larger than unity. In an attempt to represent 
possible stabilizing effects of the splitter plate at z = 0 we eliminated those modes (71) 
having even parity of ul(z), but this did not substantially affect growth rates. 

In confined flows where the growth rates are not too large (as our computations in 
the next section indicate) one might expect the presence of viscosity to eliminate 
instability below some critical K. Indeed, the visual observations, by Chen, Liu & 
Sohrab (1987), of radially finite gaseous flames in counterflowing swirling jets suggests 
that this critical K-value may even exceed n. However, the stated agreement of their 
experimental results with inviscid theory (Sivashinsky & Sohrab 1987) is puzzling, in 
the light of the present stability considerations. 

In figure 10, we see that for K = 1.0, the growth rate exhibits a maximum at /3 = 0, 
which is also found to be the case for all other K values. We find that the most unstable 
perturbations are characterized by n = I +  2 and /3 = 0, where the coefficient matrix M 
in (52) becomes singular. Also, we find that these maximally unstable modes 
correspond to the special class of inviscid disturbances : 

(72) 

which represent degenerate spirals, with vortical axis parallel to the r-direction and 
with an r-dependence resembling that of the base flow (57). The results are qualitatively 
the same for both corotating and counter-rotating disks. 

@ = (rl+'ul(z), r1+'uZ(z), r*+'wz(z), r2+'pp,(z)) ein''+"l 
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FIGURE 11. (a) Growth rate and (b) frequency as a function of aspect ratio and K for corotating 
disks for azimuthal wavenumber n = 2. 

The above results indicate that the axisymmetric similarity solutions are un- 
conditionally unstable for all K > 0, so that even a small amount of rotation destabilizes 
the simple inviscid stagnation flow. The occurrence of neutral stability for K = 0 is 
somewhat reminiscent of the viscous stability of plane stagnation flow against 
disturbances of the form (72), with n = 0, r = x, demonstrated by Brattkus & Davis 
(1990). In the present case, the growth rate (which we recall are scaled by d/ W,) become 
rapidly large as K increases from K = 0. 

Since the largest growth rates occur for /3 = 0, this implies that the most unstable 
modes are not exactly Gortler-type instabilities, where one would expect to observe 
spiral modes with axes lying roughly along the base-flow streamlines. By contrast our 
unstable modes, with axes cutting across streamlines, appear to represent a 
combination of Gortler and inflexional-profile instabilities. 

In attempting to explain the apparent discrepancy between theory and experiment, 
we note that the disturbance pressure associated with the most unstable modes (72) is 
harmonic in r and 8: 

which provides a clue to the discrepancy. Since (elliptic) problems of the type (73) are 
highly sensitive to boundary conditions, one suspects that the effect of sidewalls on 
stability cannot be neglected, as we shall confirm in the next section. 
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FIGURE 12. Growth rate and frequency as a function of K at experimental aspect ratio = 4.54 for 
various q/qo values for corotating disks for azimuthal wavenumber n = 2. 

4.2. Finite container geometry 
For a > 0, the radial dependence of the base state (33)-(35) suggests a Galerkin basis 

R, = R,(r) = 1/ 24 ( hr) , h = A , ,  1 = 1 , 2  ,..., 
40) (74) 

where A, are roots of the Bessel functions J,(h). As is well known, the R,(r) form a 
complete orthonormal set on (0, l), with 

[ rRk(r)  Rdr) dr = dkl* (75) 

with this choice of R,(r) and Z,(z), we follow the same method of solution as described 
before, with eigenvalue problem of the form (53). 

4.2.1. Results and discussion 
Figures 11 (a) and 11 (b) present relief plots of the computed growth rates Re (B), and 
frequencies Im(c) as a function of a-l and K for corotating disks, with q taken equal 
to q,,. The same plots for counter-rotating disks exhibit qualitatively similar behaviour. 
From figure 11 (a), one sees that the flow is always unstable for K > 0. However, the 
growth rate is quite small (< 0.001) until K attains a certain critical range of values. 
This behaviour is observed over a range of aspect ratios including those representative 
of our experimental set-up. 

Figure 12, obtained by taking slices through figure 11 (a), shows the growth rate and 
frequency as a function of K for an aspect ratio that corresponds approximately to our 
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K 

U -0.1 0 0. I 

10-8 - 1.3 x 1 0 3  0 1.29 x lo5 
1 O-& - 1.2 x lo2 0 1.32 x 1 0 5  
10-4 -2.1 x 10-2 0 2.29 x 10-5 

- 1.4 x lo-' 0 1.6 x 10-7 
10-3 - 1 . 1  x 10-3 0 1.7 x lo-& 

lo-' - 1.8 x lo-' 0 2.3 x 

TABLE 2. Growth rate as function of (a, K )  

experiment, at various q. One sees that the results are not sensitive to q. We should note 
that the actual experimental apparatus differs from the idealized finite container 
geometry (figure 5 )  by the presence of solid retainer rings of width x 1.5 cm at the edge 
of the porous disks (figure 1). We have chosen the sidewall radius to define the aspect 
ratio in figure 12 for purposes of comparison with experiment. The experimental value 
of a critical K x 2.0 obviously differs somewhat from the value of K z 1.6 which one 
might infer from figure 12. 

From our computations, we find that for large aspect ratios the growth rate increases 
rapidly, attaining large values even for small K, as in the case of similarity flow. 
Furthermore, the instability is always oscillatory in nature. We find a growth rate 
almost independent of, and a frequency linearly dependent on, the azimuthal 
wavenumber. The almost complete independence of growth rate from n is indicative of 
' form-preserving ' instability with no preferred azimuthal mode. 

The curious dependence of growth rate on K discussed above represents an unusual 
type of bifurcation at K = 0. This is revealed more clearly by recognizing that the 
negative real axis K < 0 corresponds to suction instead of injection at the disk which, 
although inaccessible to us in our current experimental set-up, arises mathematically 
from a reversal of signs on W, in (1 l), and, hence, on q and $ in (22)-(35). The 
calculation of $4.2 carries through, mutatis mulandi, and table 2 give select values of 
computed growth rates as a function of K and a. As seen from the table, the flow 
appears very strongly stable for K < 0 and a > 0 but, in accord with the previous 
calculations, exhibits extremely large growth rates for K > 0 as a + 0, such as to suggest 
a pitchfork bifurcation at K = 0 for a = 0. 

Of course, one should not expect the local behaviour near K = 0 to persist for all 
K < 0, given the complex bifurcations of suction-type flows revealed in the work of 
Goldshtik & Javorsky (1989). As a further qualification, we note that a stability 
calculation based on the representation (63) for the similarity limit a -+ 0 gave large 
positive growth rates even for K = 0. From this, we are led to conclude tentatively that 
the singularity of (66) for r +  00 with Re(A) > 0 renders it wholly unsuitable for the 
suction-type flow, essentially because unbounded disturbances in the far field are swept 
radially inward by the base flow. 

In view of the numerically predicted growth rates for K > 0, the apparent stability for 
0 -= K < 2.0 observed in our experiments still calls for theoretical explanation, and 
several possibilities come to mind. While it is conceivable that our linear stability 
analysis may fail to capture certain convective stabilization effects for a > 0, it seems 
more plausible to us that finite-amplitude nonlinear effects may be implicated. To 
facilitate further discussion of such effects, it is worthwhile recalling a degenerate, 
' transcritical' version of the canonical algebraic form for the unfolding of a pitchfork 
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bifurcation, as cited e.g. by Drazin & Reid (1989, p. 414 ff.) or Golubitsky & Schaeffer 
(1985, Section 4, p. 207, Case No. 6): 

x3-crx+Sx2 = 0. (76) 

Here x represents disturbance amplitude and cr = c r ( ~ ,  a) growth rate, while 6 = &(a) is 
a parameter such that S(a)+O for a+O. The most direct interpretation of our 
experiments is provided by the (Landau) scenario, S E 0, with small amplitude x 
proportional to & and with V ( K ,  a) given by our linear stability analysis. However, one 
cannot rule out a more subtle imperfect (transcritical) bifurcation arising for 6 =k 0, 
with x lying on the low-amplitude branch, at least up to K x 2, followed by a further 
bifurcation or transition to the larger amplitude branch for K 2 2. Such transition or 
bifurcation is plausible in view of the large growth rates for K 2 2 associated with the 
nearby base state. 

In conclusion, the linear stability analysis presented above suggests that, in the 
absence of confinement, swirl always destabilizes the axisymmetric stagnation-point 
flow in the high-Re regime, while sidewall confinement has a strongly stabilizing 
influence which results in a phenomenon with many features of an imperfect 
bifurcation. As viscosity is found to stabilize the unconfined similarity flow, it might 
be possible to stabilize the base flow over a wide range of Rossby numbers Ro, possibly 
into the rotation-dominated injection regime Ro < n-l, by the combined effects of 
viscosity and sidewall confinement, as may already be suggested by the experiments of 
Chen et a!. (1987). This appears worthy of further theoretical and experimental study, 
which we are currently pursuing. 

While the mass transfer technique developed here provides a convenient measure- 
ment of transport characteristics of the base flow and a rather sensitive indicator of 
instability, it is at best a qualitative tool. This is reflected by the large departures from 
the baseline shown in figures 2 and 3, which must arise from convection effects that 
could not be explained by linear disturbances on near-similarity flows. Hence, part of 
our ongoing experimental work is aimed at direct observation of flow velocities. 

This work was supported in part by National Science Foundation Grants CTS- 
9023696 and CTS-9196226. Also, acknowledgement is made to the Donors of the 
Petroleum Research Fund, administered by the American Chemical Society, for partial 
support of the research, through Grant ACS/PRF 23 120-AC7-C. We should further 
like to thank Mr Jin Yang, Mr Yifan Zhu and various other personnel at the University 
of Southern California for their efforts in the early stages of the experimental work 
reported above. 

Appendix. First-order (outer) viscous corrections 
The corrected form of the results given by Zhang & Goddard (1989) is 

+ K[X sin 2x + 2( 1 + B)2 cos 2x1 Il + I2 K sin 2x, 
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